## Life-tables and withdrawals

Number at risk
\# Alive - $\frac{\text { \# Withdrawals }}{2}$

$$
\begin{array}{cc}
\text { Proportion died } & \text { Proportion survived } \\
\frac{\text { \# Who died }}{\# \text { At risk }} & 1-\frac{\text { \# Who died }}{\text { \# At risk }}
\end{array}
$$

Cumulative proportion survived to end of each year
Multiply the proportion of people who survived each individual year.


Study participants come and leave
throughout the study due to various reasons.

| Year after <br> treatment | Alive | Died | Withdrew | Number <br> at risk | Proportion <br> died <br> during year | Proportion <br> survived <br> during year | Cumulative <br> proportion <br> survived to <br> end of year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year 1 | 500 | 223 | 24 | 488 | 0.457 | 0.543 | 0.543 |
| Year 2 | 253 | 111 | 17 | 244.5 | 0.454 | 0.546 | 0.297 |
| Year 3 | 125 | 39 | 10 | 120 | 0.325 | 0.675 | 0.200 |
| Year 4 | 76 | 13 | 8 | 72 | 0.181 | 0.819 | 0.164 |

\# At risk ${ }_{\mathrm{y} 1}=$
$500-\frac{24}{2}=488$
$\mathrm{P}_{\mathrm{D} 1}=$
$\frac{223}{488}=0.457 \approx 46 \%$
$P_{s 1}=$
Cumulative proportion survived end of $Y_{4}=$
$0.543 \times 0.546 \times 0.675 \times 0.819=0.164 \approx 16 \%$

