

## **Musculoskeletal imaging**

# IDENTIFYING SOFT TISSUE STRUCTURES

The ability to recognize different types of soft tissues is the foundation of musculoskeletal ultrasound.

## Skin

Skin and subcuticular tissue is typically thin. On ultrasound, it is most commonly noted if abnormal.





Normal

Edema

## Muscle and fascia

Striated muscle appears hypoechoic with hyperechoic striations. These striations appear linear in long-axis and dotted in short-axis. Fascia is hyperechoic and covers striated muscle.



## **Tendon**

Tendons are hyperechoic and have a fibrillar or band-like structure. They have the property of anisotropy (as observed below, right) and appear most prominent when viewed at a perpendicular angle.







## Ligament

Ligaments have a hyperechoic, band-like fibrillar pattern, and will insert on bone at both ends. They can be difficult to appreciate if uninjured; it helps to understand the underlying anatomy and expected location of the tendon, as well as to move the transducer.



#### Nerve

Nerves are best seen in short axis. They have a stippled, honeycomb appearance. Nerves appear hyperechoic below the clavicle and relatively hypoechoic above it. Like tendons, they have the property of anisotropy.



## Bone

Bones are hyperechoic and will create shadowing. If uninjured, they will have a smooth, regular contour.



## **Blood vessel**

Vascular structures are anechoic in their normal state. They can display flow on color Doppler. Veins are compressible with low pressure; arteries are typically noncompressible.



# Lymph node

Lymph nodes are hypoechoic with a hyperechoic hilum or stalk. They are most commonly appreciated if enlarged. They will display flow with Doppler.



